AP Calculus AB - Worksheet 98 Free-Response Questions — Slope Fields & Differential Equations
2008 #5

Consider the differential equation LA e
dx 42

. where x # 0.

(a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.

(Note: Use the axes provided in the exam booklet.)
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(b) Find the particular solution y = f(x) to the differential equation with the initial condition f(2) = 0.

(c) For the particular solution y = f(x) described in part (b), find li_)m f(x).
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Consider the differential equation % = H—Ty where x = 0.

(a) On the axes provided, sketch a slope field for the given differential equation at the eight points indicated.

(Note: Use the axes provided in the pink exam booklet.)
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(b) Find the particular solution y = f(x) to the differential equation with the initial condition f(-1)=1and
state its domain.
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3. The depth of seawater at a location can be modeled by the function H that satisfies the differential equation

dH 1 ! :
. E(H — 1)cos (E) where H(f) is measured in feet and ¢ is measured in hours after noon (t = 0). It is

known that H(0) = 4.

(a) A portion of the slope field for the differential equation is provided. Sketch the solution curve, y = H (1),
through the point (0, 4).
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(b) For 0 < 1 < 5, it can be shown that H(f) > 1. Find the value of ¢, for 0 < 1 < 5, at which H has a critical
point. Determine whether the critical point corresponds to a relative minimum, a relative maximum, or

neither a relative minimum nor a relative maximum of the depth of seawater at the location. Justify your
answer.

(c) Use separation of variables to find y = H(1), the particular solution to the differential equation

‘:1—7- = ‘IE(H — I)cos (é-) with initial condition H(0) = 4.
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